гипергеометрический - definitie. Wat is гипергеометрический
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is гипергеометрический - definitie

СЕМЕЙСТВО СПЕЦИАЛЬНЫХ МАТЕМАТИЧЕСКИХ ФУНКЦИЙ
Гипергеометрический ряд; Гипергеометрическое уравнение; Гипергеометрические функции

Гипергеометрический ряд         

ряд вида

Г. р. был впервые изучен Л. Эйлером (1778). Разложение многих функций в бесконечные ряды представляет собой частные случаи Г. р. Например:

(1 + z) n = F (-n, β; β; -z),

ln (1 + z) = zF (1, 1; 2; -z),

Г. р. имеет смысл, если γ не равно нулю или целому отрицательному числу; он сходится при |z| < 1. Если, кроме того, γ-α-β >0, то Г. р. сходится и при z = 1. В этом случае справедлива формула Гаусса:

F (α, β; γ; 1) = Γ(γ)Γ(γ-α-β)/Γ(γ-α)Γ(γ-β),

где Г (z) - Гамма-функция. Аналитическая функция, определяемая для |z| < 1 с помощью Г. р., называется гипергеометрической функцией (См. Гипергеометрические функции) и играет важную роль в теории дифференциальных уравнений.

Гипергеометрические функции         

аналитические функции, определяемые для |z|<1c помощью гипергеометрического ряда (См. Гипергеометрический ряд). Название "Г. ф." было дано Дж. Валлисом (1650). Г. ф. являются интегралами гипергеометрического уравнения

z (1-z)ω" + [γ-(1 + α+ βz]ω'-αβω = 0.

Это уравнение имеет три регулярные особые точки 0, 1 и ∞ и является канонической формой уравнений гипергеометрического типа. Важнейшие специальные функции математического анализа являются интегралами уравнений гипергеометрического типа (например, Шаровые функции) или уравнений, возникающих из гипергеометрических путём слияния их особых точек (например, Цилиндрические функции). Теория уравнений гипергеометрического типа явилась основой для возникновения важной математической дисциплины - аналитической теории дифференциальных уравнений. Между различными Г. ф.

ω = F (α, β; γ; z)

имеется большое число соотношений, например:

F (α, 1; γ, z) = (1-z)-1 F (1, γ -α; γ; z/(z-1)).

Лит.: Уиттекер Э. Т. и Ватсон Дж. Н., Курс современного анализа, пер. с англ., 2 изд., ч. 2, М., 1963.

Wikipedia

Гипергеометрическая функция

Гипергеометри́ческая фу́нкция (функция Гаусса) определяется внутри круга | z | < 1 {\displaystyle |z|<1} как сумма гипергеометрического ряда

F ( a , b ; c ; z ) = 1 + k = 1 [ l = 0 k 1 ( a + l ) ( b + l ) ( 1 + l ) ( c + l ) ] z k = 1 + a b c z 1 ! + a ( a + 1 ) b ( b + 1 ) c ( c + 1 ) z 2 2 ! + a ( a + 1 ) ( a + 2 ) b ( b + 1 ) ( b + 2 ) c ( c + 1 ) ( c + 2 ) z 3 3 ! + , {\displaystyle F(a,b;c;z)=1+\sum _{k=1}^{\infty }\left[\prod _{l=0}^{k-1}{(a+l)(b+l) \over (1+l)(c+l)}\right]z^{k}=1+{\frac {ab}{c}}{\frac {z}{1!}}+{\frac {a(a+1)\cdot b(b+1)}{c(c+1)}}{\frac {z^{2}}{2!}}+{\frac {a(a+1)(a+2)\cdot b(b+1)(b+2)}{c(c+1)(c+2)}}{\frac {z^{3}}{3!}}+\dots ,}

а при | z | > 1 {\displaystyle |z|>1}  — как её аналитическое продолжение. Она является решением линейного обыкновенного дифференциального уравнения (ОДУ) второго порядка z ( 1 z ) d 2 u d z 2 + ( c ( a + b + 1 ) z ) d u d z a b u = 0 , {\displaystyle z(1-z){\frac {d^{2}u}{dz^{2}}}+\left(c-(a+b+1)z\right){\frac {du}{dz}}-ab\,u=0,} называемого гипергеометрическим уравнением.